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Abstract. In this paper, we first present numerical methods that allow us to compute accurately periodic orbits 
in high dimensional mappings and demonstrate the effectiveness of our methods by computing orbits of various 
stability types. We then use a terminology for the different stability types, which is perfectly suited for systems 
with many degrees of freedom, since it clearly reflects the configuration of the eigenvalues of the corresponding 
monodromy matrix on the complex plane. Studying the distribution of these eigenvalues over the points of an 
unstable periodic orbit, we attempt to find connections between local dynamics and the global morphology of 
the orbit. 
 

1 INTRODUCTION 

One of the most challenging problems facing nonlinear science today is the extension of our knowledge of 
low-dimensional dynamics to problems which involve several degrees of freedom. This is particularly true in the 
case of conservative systems (e.g. Hamiltonian systems or symplectic mappings), in which new and more 
complicated phenomena are expected in higher dimensions.  

Hamiltonian systems with n≥2 degrees of freedom have been studied extensively in the context of celestial 
mechanics, especially with regard to problems of galactic dynamics [1-5]. In such systems one of the most fruitful 
approaches is to examine the intersection of orbits with a 2N(=2n-2)-dimensional Poincaré surface of section, on 
which the flow is reduced to a 2N-dimesional symplectic mapping [6]. 

Another very important application concerns the stability of particle beams in high energy hadron colliders, 
where symplectic mappings naturally arise e.g. due to periodically repeated (and of very brief duration) beam-
beam collisions, or beam passage through magnetic focusing elements [7, 8].  

Finding the periodic orbits of a dynamical system and determining their stability is a fundamental procedure 
in studying the behavior of the system. The stability (or instability) of a periodic orbit influences the dynamical 
behavior of nearby orbits. In particular, non-periodic orbits near a stable periodic orbit have a time evolution 
similar to the one exhibited by the periodic orbit, and so their behavior is said to be ordered, while in the 
neighborhood of an unstable periodic orbit the system is known to exhibit chaotic behavior. 

In the present paper we present a numerical method for accurately locating periodic orbits, based on 
topological degree theory, and introduce a suitable terminology for the stability type of the computed periodic 
orbits. As an example, we apply the above method to a 4D symplectic map arising in particle beam dynamics.  

2 CP- CRITERION 

Many problems in different areas of science and technology lead to the study of the solutions of a system of 
nonlinear equations of the form: 
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F(X) = 0,      (1) 

 
in an appropriate space. For example, these solutions can represent a set of equilibria for a dynamical system 

)(/ XFdtdX = . Topological degree theory has been developed as a means of examining this solution set and 
obtaining information on their existence, their number as well as their nature. It is useful, for example, in 
bifurcation theory for providing information about the existence and stability of periodic solutions of ordinary 
differential equations as well as the existence of solutions of certain partial differential equations. Several of 
these applications involve the use of various fixed point theorems, which can be provided by means of the 
concept of the topological degree [9-15]. 

Consider the problem of finding periodic orbits of period p of a flow in n+1, by fixing one of the 
variables, say xn+1=const, and locating points X*=(x1

*, x2
*, ..., xn

*) on an n-dimensional surface of section Σt0 
which satisfy the equation 
 

Φp(X*) = X*,      (2) 
 
where Φp=Pt0 : Σt0→ Σt0 is the Poincaré map of the system. This is equivalent to finding fixed points in a 2n-
dimensional map. In other words we face the problem of solving the system F(X)=0, with F=(f1, f2, ..., fn)=Φp-In, 
where In is the n×n identity matrix. It is well known that if we have a function F, which is continuous in an open 
and bounded domain D and the topological degree of F at 0 relative to D is not equal to zero, then there is at 
least one solution of the system F(X)=0 within D. This criterion can be used, in combination with the 
construction of a suitable n-polyhedron, called the characteristic polyhedron, for the calculation of a solution 
contained in this region.  
This can be done as follows:  Let Mn be the  2n×n matrix whose rows are formed by all possible combinations of 
-1 and 1. Consider now an oriented n-polyhedron Πn, with vertices Vk, k=1,..., 2n. If the 2n×n matrix of signs 
associated with F and Πn, S(F; Πn), whose entries are the vectors  
 

sgnF(Vk)=(sgnf1(Vk), sgnf2(Vk), ..., sgnfn(Vk)),   (3) 
 
(where sgn denotes the well-known three valued sign function), is identical to Mn, possibly after some 
permutations of these rows, then Πn is called the characteristic polyhedron relative to F. Furthermore, if F is 
continuous, then, under some suitable assumptions on the boundary of Πn 
 

1 n

n
F

X F (0) int(Π )

deg[F,Π ,0] sgn detJ (X) 1 0,
−∈

= = ± ≠∑
∩

   (4) 

 
implies the existence of a periodic orbit inside Πn,  where deg[F, Πn, 0] denotes the topological degree of F at 0 
relative to Πn, int(Πn) determines the interior of Πn and detJF(X) denotes the determinant of the Jacobian matrix 
at X. 

To illustrate the characteristic polyhedron concept let us consider a function F=(f1, f2) in 2 dimensions. 
Each function fi, i=1,2, separates the space into a number of different regions, according to its sign, for some 
regions fi<0 and for the rest fi>0, i=1,2. Thus, in figure 1(a) we distinguish between the regions where f1<0 and 
f2<0, f1<0 and f2>0, f1>0 and f2>0, f1>0 and f2<0. Clearly, the following combinations of signs are possible:  (-,-
), (-,+), (+,+) and (+,-). Picking a point, close to the solution, from each region we construct a characteristic 
polyhedron. In this figure we can perceive a characteristic and a non-characteristic polyhedron Π2. For a 
polyhedron Π2 to be characteristic all the above combinations of signs must appear at its vertices. Based on this 
criterion, polyhedron ABDC does not qualify as a characteristic polyhedron, whereas AEDC does. 

Let us now describe the characteristic bisection method based on the above notion of the characteristic 
polyhedron, for the computation of periodic orbits.  This method simply amounts to constructing another refined 
characteristic polyhedron, by bisecting a known one, say Πn, in order to determine the solution with the desired 
accuracy. We compute the midpoint M of an 1-simplex, e.g. 〈Vi,Vj〉, which accounts for an one-dimensional 
edge of Πn. The endpoints of this one-dimensional line segment are vertices of Πn, for which the corresponding 
coordinates of the vectors, sgn F(Vi) and sgn F(Vj) differ from each other only in one entry. We call this a 
proper 1-simplex. To obtain another characteristic polyhedron n

*Π  we compare the sign of F(M) with that of 
F(Vi) and F(Vj) and substitute M for that vertex for which the signs are identical. Subsequently, we reapply the 
aforementioned technique to a different edge (for details we refer to [12,16,17]). In particular, let 〈Vi,Vj〉 be a 
proper 1-simplex of Πn and let B=(Vi+Vj)/2 be its midpoint. We then distinguish the following three cases: 
1. If the vectors sgn F(B) and sgn F(Vi) are identical then B replaces Vi and the process continues with the 
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next proper 1-simplex. 

2. If the vectors sgn F(B) and sgn F(Vj) are identical then B replaces Vj and the process continues with the 
next proper 1-simplex. 

3. Otherwise the process continues with the next proper 1-simplex. 
 

 
Figure 1. (a) The polyhedron ABDC is non-characteristic while the polyhedron AEDC is characteristic, (b) 
Application of the characteristic bisection method to the characteristic polyhedron AEDC, giving rise to the 

polyhedra GEDC and HEDC, which are also characteristic. 
 

To fully appreciate the characteristic bisection method let us describe in figure 1(b), its repetitive operation 
on a characteristic polyhedron Π2. Starting from the edge AE we find its midpoint G and then calculate its vector 
of signs, which is (-1,-1). Thus, vertex G replaces A and the new refined polyhedron GEDC, is also 
characteristic. Applying the same procedure, we further refine the polyhedron by considering the midpoint H of 
GC and checking the vector of signs at this point. In this case, its vector of signs is (-1,-1), so that vertex G can 
be replaced by vertex H. Consequently, the new refined polyhedron HEDC is also characteristic. This procedure 
continues up to the point that the midpoint of the longest diagonal of the refined polyhedron approximates the 
root within a predetermined accuracy. 

Consider the characteristic n-polyhedron, Πn, whose longest edge length is ∆(Πn). The minimum number ζ 
of bisections of the edges of Πn required to obtain a characteristic polyhedron n

*Π  whose longest edge length 

satisfies ∆( n
*Π )≤ε, for some accuracy ε ∈ (0,1), is given by  

 
ζ = [log2(∆(Πn)ε-1)].     (5) 

 
Notice that ζ is independent of the dimension n, implying that the bisection algorithm performs the same number 
of iterations as the bisection in one-dimension, which is optimal and asymptotically possesses the best rate of 
convergence [18]. The characteristic bisection method is efficient for low dimensions (say, n≤10). This is due to 
the fact that the starting box as well as the characteristic polyhedron requires 2n vertices. 

The characteristic bisection method has been applied to numerous difficult problems (see for example [19-
23]). It is very useful in cases where the period of the periodic orbit is very high and especially when the orbit is 
unstable, since the method always converges within the initial specified region.  

A further advantage of the characteristic bisection method is the convenient way with which we can 
distinguish the exact location of all periodic orbits of a given period, including the unstable orbits. This can be 
achieved through the coloring of the surface of section. The coloring process works as follows. Suppose that in a 
flow the periodic orbit under consideration is of period p. Denote the initial point by )x,(x 00 � . We integrate the 

equations of motion, starting from )x,(x 00 � , up to the point that the orbit intersects the x-axis 2p times. Let 

)x(x, �  denote the point at the end of the integration. We evaluate the signs of the following differences: 
 

)x(x 0−     and    )xx( 0�� − .     (6) 
 
Clearly, four combinations of signs are possible; namely (-,-), (-,+), (+,+) and (+,-) (see figure 2). Each one of 
these combinations corresponds to a different color. More specifically, starting from heavy gray to light gray we 
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colour the areas that correspond to the sign combinations (+,-), (-,-), (-,+) and (+,+). To color the whole plane 
we select each point contained in the plane as the initial point and apply the coloring procedure. At each point 
where the four different colors meet, a periodic orbit (stable or unstable) exists. 

 

 
Figure 2. Application of the characteristic bisection method. Starting from heavy gray to light gray we color the 

areas that correspond to the sign combinations (+,-), (-,-), (-,+) and (+,+). 
 

In figures 2(a)-(d) the application of the characteristic bisection method is illustrated. Starting with a 
polyhedron ABDC (figure 2(a)), we examine whether it is characteristic or not. In the present case ABDC is not 
characteristic; this is easily verifiable by the fact that two vertices of the box have the same color. To overcome 
this problem, we need to determine a new vertex that will contain the missing combination; such a vertex is E. 
Ηaving constructed a characteristic polyhedron we legitimately apply the method. In figure 2(b) we select the 
midpoint, F, of the largest edge, namely EC, and examine the corresponding combination of signs at F. Since the 
combination at F is identical to that in C (these two points have the same color), F substitutes C giving rise to a 
new refined characteristic polyhedron, ABEF. Figures 2(c), (d) exhibit two subsequent iterations of this method. 
Both GBEF and GHEF are characteristic. Following this procedure the desired solution is successfully captured. 

Of course, the application of the characteristic bisection method does not necessarily require the coloring 
procedure. We utilized this procedure to illustrate the operation of the method and to provide a visualization of 
the solution. 

3 STABILITY TYPES OF PERIODIC ORBITS  

The linear stability or instability of a periodic orbit of an n+1 degrees of freedom Hamiltonian flow is 
determined by the eigenvalues of the corresponding 2n×2n monodromy matrix (see for example [24, 25]). This 
is a matrix whose columns are suitably chosen linearly independent solutions of the variational equations, which 
describe the time evolution of a small deviation from the periodic orbit. Equivalently the linear stability of a 
periodic orbit of 2n-dimensional symplectic map is determined by the eigenvalues of the 2n×2n return Jacobian 
matrix [26, 27, 13]. We note that for the above systems if λ is an eigenvalue then 1/λ is also an eigenvalue, and if λ is 
an eigenvalue the complex conjugate λ* is also an eigenvalue. All the different stability cases are shown in 
figure 3. The orbit is stable (S) when λ and 1/λ are complex conjugate numbers on the unit circle. The orbit is 
unstable (U) when λ and 1/λ are real (both positive or negative). The orbit is complex unstable (∆) when we 
have four complex eigenvalues not lying on the unit circle and the real axis, forming two pairs of inverse 
numbers and two pairs of complex conjugate numbers. Two of the eigenvalues are inside the unit circle while 
the other two are outside it. 
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Figure 3. Configuration of the eigenvalues of the monodromy matrix on the complex plane, with respect to the 

unit circle, for the stable (S), unstable (U) and complex unstable (∆) cases. We note that λ* denotes the complex 
conjugate of λ. 

 
The general stability type of a periodic orbit of a Hamiltonian system with n+1 degrees of freedom, or of a 

2n-dimensional symplectic map is [25] 
 

SkUm∆l,       (7) 
 

where k, m and l are integer numbers, denoting that 2k eigenvalues are on the unit circle, 2m eigenvalues are on 
the real axis and 4l eigenvalues are on the complex plane but not on the unit circle and the real axis. The integers 
k, m, l satisfy the inequalities: 

 
0 ≤ k ≤ n,   0 ≤ m ≤ n,   0 ≤ l ≤ [n/2]    (8) 

 
and the constraint  

 
k + m + 2l = n.      (9) 

 
In the case of 4-dimensional maps (an example of which is studied in the next section) or 3 degrees of 

freedom Hamiltonian systems, the periodic orbits can exhibit 4 different stability types according to equations 
(7)-(9); namely S2, S1U1, U2 and ∆1. 

 
 

4 PERIODIC ORBITS OF A 4-DIMENSIONAL SYMPLECTIC MAP  

 
As an example, we shall apply our method to the periodic orbits of the 4-dimensional symplectic map 
 

11 1 1
2 2

2 1 32 1 1

33 2 2

4 1 34 2 2

xx cos ω -sin ω 0 0
x  + x  - xx sin ω cos ω 0 0

T :  =  × 
xx 0 0 cos ω -sin ω

x  - 2x xx 0 0 sin ω cos ω

′     
    ′     
    ′
         ′     

,  (10) 

 
 
which describes the instantaneous effect experience by a hadronic particle as it passes through a magnetic 
focusing element of the FODO cell type [7, 13, 14]. x1 and x3 are the particle’s deflections from the ideal (circular) 
orbit, in the horizontal and vertical directions respectively, and x2, x4 are the associated ‘momenta’, while ω1, ω2 
are related to the accelerator’s betatron frequencies (or ‘tunes’) qx, qy by 
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ω1 = 2π qx,    ω2 = 2π qy     (11) 
 

and constitute the main parameters that can be varied by an experimentalist. 
Using qx=0.28 and qy=0.31, we have succeeded in computing periodic orbits for periods p up to the 

thousands, within an accuracy of ε=10-15. This means that  
 

||Tp(X*) - X*|| ≤ ε,      (12) 
 
where || || denotes the Euclidean norm and X* is the initial conditions array of the periodic orbit. In table 1 we list 
some of these orbits, giving also their initial conditions and indicating their stability type. 
 
 
 

Period S.T. x1 x2 x3 
 

x4 

29(a) S2 .054115471909559 .033452533896669 .123803811258383 .302891822631234
29(b) S1U1 .053714958340646 -.021127423014299 .126599277466037 -.288382572209036
29(c) S1U1 -.311914175003230 .478963436888487 .072275663783410 .000149103204147
29(d) S1U1 -.426820469769928 -.696514992607285 .271814834256359 -.402734706275434
29(e) U2 .467606951226090 .287263398595477 -.060318149783338 -.055560910967235
29(f) ∆1 

 
.391491732796431 .275189221962443 -.072683249141786 -.120237601901905

1110 S2 .043655915204738 -.085080231465811 -.024179438643791 -.045566874737762
1110 S1U1 .397170936606918 -.181703664251662 .008899847771039 .066503595515161
1110 U2 

 
.337621956752420 .159497127557947 -.025276553445374 -.083066394306752

3427 S2 .015138176638644 -.007636910751599 .027195105687227 .357893918903753
3427 S1U1 -.337639441332020 .029662641196283 -.167198400130657 .060223832997082
3427 ∆1 

 
-.033187545699040 -.064807782377702 -.022594721878829 -.065664313143049

33092 S1U1 -.080099355622269 -.097941671799252 -.117764715099814 -.000246950450343
33092 U2 -.420430408039337 .167141448638504 .214758833536393 -.036705323743372
33092 ∆1 

 
.182805145505144 -.088673776696611 -.166727694831605 -.133587268367562

34202 S1U1 -.441846803970965 -.508725462305463 .057087631646123 -.027426076281871
34202 U2 .197533223112076 -.182875153056365 -.144625557529287 -.082872892401335
34202 ∆1 

 
-.108426091566732 -.050257267184845 -.134364519937652 .062300085029408

37629 U2 -.468552017011198 -.604027173874510 -.015514258102956 .010180985462038
37629 ∆1 -.378873134810995 -.359329069465166 -.020965908282744 .013681842094073

 
 

Table 1. Initial conditions x1, x2, x3, x4 of periodic orbits and their stability type (S.T.). The periodic orbits of 
period 29 are named with letters from a to f.  

 
 
 
The dynamical behavior of orbits in different regions of phase space is influenced strongly by the properties 

of the nearby periodic orbits. In figure 4 we see the distribution of the six periodic orbits of period 29 listed in 
table 1, as 29(a) to 29(f). We note that only orbit 29(a), located near the origin and marked by small crosses in 
figure 4(b), is stable, with all 4 of its complex eigenvalues on the unit circle.  
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Figure 4. (a) Projection on the x1x2 plane of the six periodic orbits of period 29 listed in table 1. The points of 

each orbit are marked by different symbols. (b) Enlargement of the region included in the dashed-line frame of 
(a), where the points of the periodic orbits 29(a) and 29(b) are located. Note that the points of the two orbits are 

located very close to each other in this projection. 
 
The orbit 29(b), on the other hand, whose points are located very close to the ones of orbit 29(a) in figure 

4(b), is slightly chaotic since its stability type is S1U1 and the norm of the larger real eigenvalue is 
|λ|=1.00000001451116. The points of the orbit generated by perturbing the initial conditions of the unstable 
orbit 29(b) by dx1=+0.003, form the ordered structure plotted in figure 5. On the other hand the orbit we get by 
perturbing the initial condition of the S1U1 type orbit 29(c) by dx2=+0.025, exhibits chaotic behavior since its 
points are scattered in a region located nearby the 29(c) orbit and finally escape to infinity after about 32,000 
iterations (figure 6). We note that orbits 29(c) has the same stability type as 29(b); i.e. S1U1 but the norm of its 
larger real eigenvalue is |λ|=1.20719498710467. The perturbed orbit of figure 6 is influenced by the nearby 
unstable orbit 29(f) whose stability type is ∆1, as well as by the other two unstable orbits 29(d) and 29(e).  
 
 

  
 

Figure 5. (a) Projection on the x1x2 plane of the orbit whose initial conditions are generated by perturbing the 
initial conditions of orbit 29(b) by dx1=+0.003. (b) Enlargement of the region included in the dashed-line frame 

of (a). Some points of the orbits 29(a) and 29(b) are also visible. 
 



T.C. Bountis, Ch. Skokos and M.N. Vrahatis. 

 
Figure 6.(a) Projection on the x1x2 plane of the orbit whose initial conditions are generated by perturbing the 

initial conditions of orbit 29(c) by dx2=+0.025. (b) Enlargement of the region included in the dashed-line frame 
of (a). Some points of the orbits 29(c) and 29(f) are also visible. 

 

 

5 CONCLUSIONS  

 
In this paper we have described an efficient method for rapidly and accurately computing periodic orbits in 

dynamical systems, which we call the characteristic bisection method. We have applied our method to a 4-
dimensional symplectic mapping of interest to accelerator dynamics and succeeded in finding periodic orbits of 
very high period and of various stability types. 

It is important to note that in such 2N-dimensional conservative dynamical systems, the study of stability is a 
subtle matter, as it involves N (generally complex) eigenvalue pairs, whose computation requires a very accurate 
knowledge of the periodic orbit itself. Stability is expected to be the exception rather than the rule, since it 
demands that all eigenvalue pairs lie on the unit circle. 

Now, as some parameter of the problem is varied, one (or more) eigenvalue pairs begin to "collide" and split 
off the unit circle rendering the orbit unstable. This raises the need for different notation in order to distiguish 
among all these stability types, according to their number of eigenvalues whose magnitude is larger than 1. For 
this reason, we introduced such a notation in section 3 and then used it to characterize, as an example, all 
different period 29 orbits of the 4-dimensional map (10). 

The next step in this study is, of course, the examination of the connection between all these different types 
of instability and the complexity of the dynamics in the vicinity of the corresponding periodic orbits. It is 
reasonable to expect that, as the number of eigenvalues exiting the unit circle increases (and the orbit becomes 
"more unstable") the motion in the neighborhood of the orbit would exhibit a higher degree of chaotic behavior. 

Thus, since we have developed in our work reliable quantitative criteria, by which one can study and 
compare chaotic vs. regular dynamics in phase space [8, 13, 14, 25, 28], it is our next target to address these questions 
and present our results in a future publication. 
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